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Abstract. By adapting an attractor neural network to an appropriate training overlap, we 
optimize its attractor overlap, and subsequently the storage capacity, when retrieval noise 
(temperature) is present in the system. The training overlap is determined self-consistently 
by the optimal attractor overlap. The phase diagram of the optimal attractor overlap in 
the temperature-storage space is found. A novel co-existence phase of strong and weak 
retrievers is present. The maximum storage capacity deviates from the storage capacity of 
the maximally stable network on increasing temperature, and in the high-temperature 
regime ( T 2 0 . 3 8  for Gaussian noise), the Hopfield network yields the maximum storage 
capacity. Our analysis demonstrates the principles of specialization and adaptation in 
neural networks. 

1. Introduction 

It is well known that retrieval in attractor neural networks is very robust against noise 
disruption [ 1-31. In the presence of a moderate amount of noise, which flips the states 
of the nodes with a probability dependent on the local field and the noise magnitude 
(or temperature), the network configuration can still drift towards the neighbourhood 
of a stored pattern. Phase diagrams in the space of temperature (T) and storage level 
(a) have been obtained for various synaptic prescriptions. However, the optimization 
of network performance in the presence of noise remains an open question. 

Following the work of Gardner and Derrida [4 ,5] ,  we have recently studied the 
effects of introducing noises in the training stage, rather than the retrieval stage of an 
attractor neural network [6,7]. In the presence of training noise, the associativity (i.e. 
the size of the basin of attraction) of the stored patterns increases, although an excessive 
amount of training noise also reduces the retrieval quality. 

In this paper we extend the work of [6] and introduce another use of training 
noises: by adapting an attractor neural network to an appropriate amount of training 
noise, we can optimize its performance, and hence the storage capacity, when retrieval 
noises are present. 

Already in [3], there have been indications that training noises are required to 
improve the retrieval performance in noisy networks. The so-called maximally stable 
network (referred to as the MSN hereafter) has the maximum storage capacity in the 
absence of retrieval noise, but at high temperature it performs worse than the Hopfield 
network. (Indeed, we have shown in [8] that the Hopfield synaptic prescription gives 
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the best performance, among all Boolean functions, in the high-training-noise limit at 
zero temperature, Hence it is natural to expect that it performs better than other 
networks in general high-noise situations.) At moderate temperature, 'learning with 
error' can also improve marginally the performance of the MSN.  No doubt, the network 
with maximal stability minimizes the output error for the case of perfect input of a 
pattern [6], but the input signals to a node in the presence of retrieval noises can never 
be perfect, even in the attractor of a stored pattern. Optimizing the performance of 
the network therefore requires its adaptation to imperfect input signals. The notion of 
training noise adaptation [ 61 is therefore relevant. 

To determine the amount of training noise to be introduced, we make use of the 
principle that when a system optimizes its performance in a training environment, then 
its performance is optimized, among other systems, in the same retrieval environment. 
This concept is similar to the notion of adaptation in biology. Thus we can optimize 
the network performance by adjusting the training noise to be at the same level as the 
error in the retrieval attractor. Since the retrieval error again depends on the training 
noise, they can only be determined self-consistently. 

We emphasize the distinction between learning and adaptation. Ordinary learning 
involves optimizing the network performance in a fixed training environment. On the 
other hand, adaptation involves optimizing the network performance in a fixed retrieving 
environment. An adapted performance can only be determined self-consistently by the 
retrieval performance, and an adaptive process involves continually optimizing the 
network performance in the (adiabatically evolving) environment created by its own 
retrieval stage, so that the attractor performance of the network is eventually optimized. 

Consequently, the retrieval performance and phase diagrams in this paper do not 
correspond to those of networks with fixed synaptic prescriptions, say the MSN or the 
Hopfield network, which were usually studied in previous literature, say [3]. Instead, 
we are searching the entire space of interactions for the optimal performance. The 
network for each value of T and a we study corresponds to a unique interaction 
configuration, or a unique retriever. To emphasize this distinction, we call a phase 
diagram such as figure 5 a retriever phase diagram, in contrast to retrieval phase 
diagrams in previous literature. 

The principle of adaptation is very general. Apparently, it will have far-reaching 
implications to the training of neural networks beyond the particular example con- 
sidered here. 

2. Formulation 

With this background discussion, let us turn to a more detailed analysis. There are 
two ways of introducing noises to the retrieval dynamics. 

(i) Discrete noise. The output state Si of a node i at time t +  1, which takes the 
possible Ising values i-1, is updated according to the probability 

where T = p- '  is the temperature, quantifying the amount of retrieval noise, h , ( t )  is 
the (normalized) local field at node i, given by 

1 'c 
h , ( r )=-  c J, ,S , ( ' )  (2) E,=,, 
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with C being the connectivity of a node, and j = i , ,  . . . , ic the nodes feeding node i. 
Here the interactions J ,  satisfy the spherical constraint X, JS = C, and we shall be 
interested in the case of large connectivity C >> 1. 

(ii) Gaussian noise. The output state S, of node i at time t + 1 is stochastically 
updated according to 

(3)  SI ( t + 1 ) = sgn ( h, ( t ) + Tz ) 

where z is a Gaussian variable of mean 0 and width 1. 
Below we shall focus on the case of Gaussian noise. 
Next, we consider optimizing the averaged output overlap gt  at node i of the 

stored patterns {tt ; 1 S i S N ;  1 S p G p }  for a temperature T and training overlap m,,  

g f l = ( ( 5 t S , ( t + l ) ) t h ) m , .  (4) 
Here (. . .)th denotes thermal averaging at temperature T, and (. . .),,,, represents averaging 
over input states {S,(  t ) }  having overlap m, with pattern p. It turns out that this quantity 
is a function of A t ,  which is the local field at node i, in the aligning direction of the 
output state t t ,  when the input state is that of the stored pattern p [9-111, i.e. 

( A y  will henceforth be called the aligning field, and the subscript i will be implicit 
hereafter). Since in this case the local field for pattern p is a Gaussian variable with 
mean m,AP and width G, the performance function to be optimized is then the 
averaged output overlap given by 

r r 

g,,(Ii’”)= Dz Dysgn(m,A’”++y+Tz) J J  

with Dz = exp( -z2/2) d z / f i .  
Following [6], we shall take this as the appropriate performance function, and 

maximize it in the space of interactions, quenched-averaged over the stored patterns 
(5:). This is done by defining an energy function equal to minus the performance 
function, introducing a free energy corresponding to a thermodynamic average at an 
annealing temperature Tan and then taking the limit Tan+O to give the ‘ground-state 
energy’/minimum cost. (Note that the annealing temperature Tan is unrelated to the 
noise temperature T.) Using the replica method [ 121 for averaging over random patterns, 
the results of [6] can easily be generalized, in the replica symmetric ansatz, to optimize 
an arbitrary performance function g which is dependent on the variables A’”. This 
procedure of optimization is derived in appendix 1, and summarized as follows. 

Consider optimizing the performance XF g(A’). The averaged maximum per- 
formance per pattern is dAp(A)g(A), where p ( A )  is the aligning field distribution 
given by 

p ( A )  = D t s ( A  - A ( t ) )  (7 )  I 
where h ( t )  is the inverse function of t ( A )  defined by 
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where y is a constant determined by the condition 

Dt(A ( 1 )  - t)’ = a-’ (9) 

with a = p / C  being the storage level. When the function A (  t )  is multi-valued, we 
choose the argument which gives the largest value of g(A)-(A -t)’/2y. This is 
equivalent to discarding the range of argument [A, ,  A,] given by Maxwell’s con- 
struction 

dAt(A) = t o ( A ,  - A < )  (10) I: 
where to= t ( A , )  = t (A , ) .  

This completes our formulation of the training stage. 
To study the retrieval stage of this optimized network, we consider the output 

overlap f,,(m) with a stored pattern for an arbitrary input overlap m at the same 
temperature T. Again, this mapping is determined by the aligning field distribution 
p,,,,(A), which in turn is determined by the training overlap m, via equations (7)-(10). 
Following the argument of [9- 111, which we have already used in deriving equation 
( 6 ) ,  namely that the local field for an input overlap m with pattern /L is a Gaussian 
variable with mean mAw and width d?$, we have 

fm , (m)  = dbm,(lj)gm(A) (11) I 
where g , ( A )  is given by equation ( 6 )  with m, replaced by m. Note that the output 
overlap is a function of both the retrieval overlap m and the training overlap m,,  and 
when m becomes m,, equation (1 1) reduces to the maximum performance function. 

Finally, we have to determine the training overlap m, which gives the optimal 
performance for a constant temperature T and storage level a. To this end we invoke 
a principle of adaptation relating the training overlap m, and the retrieval overlap m. 
This means that if we consider a fixed retrieval overlap m and search the space of 
interactions, the network which gives the best output overlap is the one corresponding 
to the training overlap m, = m. Conversely, if we consider a network with fixed training 
overlap m, and search the space of state configurations, the output overlap which is 
better than those of any other networks is found at the retrieval overlap m = m,.  These 
statements are the direct consequences of the optimization procedure. Thus we can 
envisage a family of retrieval curves fm,( m )  each being enveloped by the curve fm( m )  
above them (see figure 1). Mathematically, this is equivalent to 

As a check that our optimization procedure sketched from equations (7)-(10) does 
lead to this conclusion, this equation is explicitly proved in appendix 2. 

So far, the analysis is applicable to attractor neural networks of any connectivity, 
as well as for feedforward networks for one time step. Henceforth, we shall restrict 
our discussion to dilute attractor neural networks satisfying C << In N, whose retrieval 
dynamics is completely determined by the retrieval mapping in (1 1) [2]. The attractor 
overlap corresponds to the stable fixed points of the retrieval mapping, and the basin 
boundary of the attractor is determined by its unstable fixed points. 
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m 

Figure 1. A schematic diagram of the family of retrieval curves f,,,,( m )  and their envelope 
f , , , (m).  The fixed point of the envelope optimizes the network performance. 

Now if we consider the training overlap m, as an adjustable parameter, the principle 
of adaptation relating the optimal training and retrieval overlaps implies that the stable 
fixed point of the envelope f m ( m )  would give the best attractor overlap. Hence for a 
constant temperature T and storage level a, we would choose the training overlap m, 
to be the fixed point m of the envelope f m (  m): 

f m ( m )  = 171. (13) 
Once we obtain the fixed point of the envelope, the retrieval mapping of the correspond- 
ing training overlap will touch the envelope at the same point, and its fixed point will 
be identical. As schematically shown in figure 1, it will give a greater fixed point overlap 
than any other network for the particular T and a. Hence the fixed point of the 
envelope gives, on one hand, the training overlap required to optimize the network 
performance and, on the other hand, the attractor overlap during retrieval. 

3. Results for the optimally adapted retrievers 

Thus the best possible attractor overlap is given by the solution of equations ( 6 ) -  
(1 l ) ,  (13) for a constant T and a. In practice, we solve equations ( 6 ) - ( 8 ) ,  ( lo) ,  ( l l ) ,  (13) 
for a constant T and m, and find the corresponding a by equation (9).  In general, the 
retrieval envelope f m (  m )  has at most two convex regions in the range OS m s 1, and 
hence there exist at most two non-zero stable fixed points, in contrast to the retrieval 
curve of the MSN,  which has at most one non-zero stable fixed point in the same range. 
(See figure 2.) As we shall see, this interesting difference gives rise to novel co-existence 
phases in the phase diagram. The results, on increasing T, are presented below. (See 
figure 3.) 

First consider T = 0. For 0 S a 4 0.60, the perfect retriever with m = 1 is the only 
stable fixed point, and m = 0 is the only unstable fixed point. This means that a network 
capable of perfect retrieval can be constructed, if we use a training overlap m, = 1-. 
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Figure 2. A schematic plot of the retrieval envelope f , , , (m) having two non-zero stable 
fixed points P and R in the range 0 s  m S 1.  This envelope is typical in region I1 of the 
phase diagram in figure 5. (Regions I and 111 have only one non-zero stable fixed point 
in the same range.) The retrieval curve fvsh(m) of the MSN, which has only one non-zero 
stable fixed point S, is also shown for comparison. It touches the envelope at m = 1, with 
its stable fixed point S smaller than the greater one P of the envelope, and unstable fixed 
point T larger than the corresponding Q of the envelope. 

a 

Figure 3. The dependence of the fixed point overlap of the optimally adapted retriever on 
the storage level for 7 = 0,0.2,0.4,0.6,0.8 and 1.0. The stable fixed point off , , , (m) is shown 
in solid curve, and the unstable in dotted curve. The dashed curve corresponds to the 
discontinuous transition between stable and unstable fixed point overlaps. The alphabetical 
labels correspond to points in the phase diagram of figure 5 .  
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This retriever is the MSN [6] .  As a increases above 0.60, an extra pair of stable and 
unstable fixed points appears and bifurcates. (Refer to R and Q respectively in figure 
2 . )  Thus besides the perfect retriever, we have another retriever of weaker attractor 
overlap but, nevertheless, which has a locally maximal performance when compared 
with other networks in its neighbourhood of the interaction space. As a increases 
above 0.64, this weak retriever vanishes, leaving behind the perfect retriever and the 
non-retriever with nz = 0 as the stable fixed points. At a = 2 ,  when the network reaches 
its storage capacity, the perfect retriever is also destabilized. 

The second stable fixed point of the retrieval envelope should not be interpreted 
as a second weaker retrieval state at  the optimal network conjguration which, if it exists, 
should correspond to a second stable fixed point of a single retrieval mapping. Here 
we have, instead, a second stable fixed point of the envelope of a f a m i l y  of retrieval 
mappings. Rather, this stable fixed point can be interpreted as an attractor of self- 
adaptation, in the sense that if we start with a network in its neighbourhood of the 
interaction space, and allow it to adiabatically adapt its interactions to optimize the 
performance at the retrieval attractor, then the attractor overlap will converge to this 
stable fixed point. 

Likewise, the unstable fixed point of the retrieval envelope should not be interpreted 
as the basin boundary of retrieval attraction. Instead, it corresponds to the basin 
boundary of self-adaptation. A further significance of the unstable fixed point will be 
discussed below. 

As T increases from 0 to 0.38, the picture is essentially the same: only a single 
optimal retriever is present at low storage level; both strong and weak retrievers are 
present at intermediate storage level; and only the strong retriever survives with a 
narrowed basin of self-adaptation at high storage level. The attractor overlap of the 
strong retriever, however, is no longer perfect, but drops with both T and a. At some 
a = a,( T ) ,  the attractor overlap of the strong retriever and the boundary overlap of 
self-adaptation coalesce, and the optimal attractor overlap of the network vanishes 
discontinuously. Since this attractor overlap corresponds to the maximal performance 
in the interaction space, we argue that a,( T )  is the maximum storage capacity attainable 
by attractor neural networks. a,( T )  also decreases with T. 

As T increases, the strong retriever of high training overlap is less and less favourable 
when compared with the weak retriever of lower training overlap. For 0.38 s T s 0.51, 
the strong retriever vanishes before the weak on increasing a, and for Ta0 .51 ,  there 
is at most one retriever for each a. Hence, near a,( T )  the optimal attractor overlap is 
attained by the weak retriever, and a,( T )  now corresponds to a training overlap which 
vanishes continuously. Since from (61, g ( A )  - A  in this limit, we can easily verify that 
the aligning field distribution ~('4) is again a Gaussian distribution of mean l /& and 
width 1, corresponding to a dilute Hopfield network with Hebbian synapses, i.e. 
J,, - Zg [Y[y, whose storage capacity is a,( T )  = 2/[ 7 ~ (  1 + T' )] .  Thus the Hopfield 
network gives the maximum storage capacity for attractor neural networks in the 
high-temperature regime ( T  0.381, where the optimal attractor overlap undergoes a 
continuous transition. 

We have also shown for comparison in figure 4 the attractor overlap and the basin 
boundary of attraction for the MSN, which corresponds to a vanishing amount of 
training noise [6]. While the attractor overlaps of the two systems are close in the 
low-noise regime (i.e. low T or low a ) ,  the performances of the MSN (i.e. both the 
attractor overlap and the storage capacity) are increasingly inferior in the high-noise 
regime. N o  weak retrieval states are present in the MSN.  
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0 0 2  0 4  0.6 0.8 1.0 

a 

Figure 4. The same curves as in figure 3 for the M S N  

Figure 5 shows the phase diagram in the T - a space. The curve AE corresponds 
to the bifurcation line on which the weak retriever separates from the strong one, CE 
corresponds to the transition line on which the strong retriever vanishes discontinuously, 
and BF that on which the weak retriever vanishes continuously. Hence the regions I 
to IV are, respectively, the single retriever, strong and weak retrievers, strong retriever, 
and non-retriever phases. The maximum storage capacity of attractor neural networks 
is given by the discontinuous transition line CD for Ts0 .38 ,  and the continuous 
transition line DF for T 3 0.38. When compared with the storage capacity of the MSN, 

1.0 

0.8 

0.6 

T 

0.4 

0.2 

n 

IV 

0 0.5 1.0 1.5 2.0 
a 

Figure 5. The retriever phase diagram of the optimal network in the temperature-storage 
space. The retrieval phase boundary of the MSN (dotted curve) is also shown for comparison. 
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the maximum storage capacity is increasingly superior for increasing T, but the storage 
capacity is increasingly superior for increasing T, but the storage capacity curves 
eventually come together asymptotically in the very-high-temperature limit. 

Note, however, that this phase diagram should nor be interpreted as a phase diagram 
of attraction, but one for self-adaptation. Phase diagrams of attraction, which usually 
appeared in previous literature, say [3], describe the attractor behaviour of networks 
with fixed synaptic prescriptions, say the MSN or the Hopfield network. Here, through 
the process of self-adaptation, each point in the T - a space has its own optimal value 
of the training overlap. The phase diagram thereby illustrates the (global or local) 
maximum attractor overlaps that can be attained for a particular value of T and a if 
we, instead of considering a fixed synaptic prescription, search in the interaction space 
for the optimum. 

Consequently, we note an important difference between phase diagrams of attraction 
and of self-adaptation. When we deal with networks of fixed synaptic prescriptions, 
the aligning field distribution p (  A),  which determines the retrieval behaviour, is 
determined by a, and not T. For a given a, the network configuration is independent 
of T. On the other hand, when we consider self-adapted networks, the aligning field 
distribution is optimally determined by both a and T. If we consider networks 
self-adapted at a fixed temperature TI ,  the corresponding phase diagram of attraction 
will have the phase boundaries touching those of self-adaptation at T , ,  but not 
necessarily at other temperatures. (The exception, however, is the case when the 
maximum storage capacity a,( TI) is given by that of the Hopfield network, which is 
the optimal retriever for all temperatures above 0.38. Hence the phase boundary of 
attraction coincides with the vanishing line of the weak retriever for T,  5 0.38. Another 
case of interest is 0.38 S TI  G 0.51, when there is a discontinuity in the self-adapted 
overlap as a is varied. This implies that when we consider the phase diagram for 
self-adapted networks at fixed TI,  there will also be a corresponding discontinuity in 
the phase boundaries of attraction, each branch touching one of the phase boundaries 
of self-adaptation at T , .  These interesting cases are, however, beyond the scope of 
this work.) 

It is interesting to note that the bifurcation line AE and the discontinuous transition 
line CE meet at the critical point E with a common tangent. Using series expansion 
around E, we see that the cusp has a critical exponent 3, as shown in appendix 3. 

4. Discussions 

We have found the optimal attractor overlap as a function of T and a, and the maximum 
storage capacity as a function of T. A related issue is the optimization of the associativity 
of the attractor neural network (i.e. maximizing its basins of attraction). Similar 
arguments lead us to conclude that the optimal basin boundary for a constant T and 
a is given by the unstable fixed points of the envelope f , ( m ) ,  and a training overlap 
equal to this basin boundary should be introduced to attain this optimum. Since the 
stable and unstable fixed points coalesce at the phase boundaries, the phase diagram 
in this case is identical to figure 4, except that the regions I to IV are now, respectively, 
the wide retriever, wide and narrow retrievers, narrow retriever, and non-retriever 
phases. This suggests that the maximum storage capacity a , (T )  can be attained by 
either maximizing the retrieval overlap or the basin of attraction; the two requirements 
are equivalent at the phase boundary. In regions I and 11, the Hebbian synaptic 
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prescription gives the maximum possible associativity, although it may not give the 
best retrieval overlap. 

Despite the similarity of phase nomenclatures with those in the phase diagram of 
attraction for the M S N  in [ 3 ] ,  we again caution that here the phase diagram of 
self-adaptation bears a very different meaning, for it reflects the best possible associativ- 
ity in the interaction space for each value of T and a. Again, if we consider networks 
with maximum associativity at a fixed temperature TI,  the corresponding phase diagram 
of attraction will have the phase boundaries touching those of self-adaptation at T,  , 
but not necessarily at other temperatures (except for T I  3 0.38 when the phase bound- 
aries of attraction and self-adaptation coincide. Also, for TI s 0.38, there is a discon- 
tinuity in the phase boundaries of attraction.) We further caution that while the phase 
diagrams for maximum overlap and associativity are identical, they correspond to 
networks of different training overlaps for a general value of T and a ;  the training 
overlaps of the two cases become identical only at the phase boundaries. Furthermore, 
the networks in the two cases converge to different attractor overlaps. 

It should, furthermore, be remarked that when the wide retriever exists, optimal 
associativity does not correspond to a unique retriever (except at the phase boundary). 
This is because when the wide retriever exists, the origin becomes an unstable fixed 
point of the retrieval envelope f , (m) .  Since retrieval curves of any training overlap 
pass through the origin, there exists a range of retrievers having the origin as an 
unstable fixed point, and each of them has the same optimized associativity, in the 
sense that each is a wide retriever. In this case, the Hopfield network, which corresponds 
to a training overlap of m, = O', can still have the best associative power among the 
wide retrievers, in the sense that its ascendent in overlap with a stored pattern is still 
greatest near the origin. However, the Hopfield network may or may not give the best 
retrieval overlap among the possible wide retrievers. As an example, figure 2 of [6] 
shows that for a = 0.5 at T =  0, retrievers with m, between 0 and 0.77 are all wide 
retrievers, and while the Hopfield network gives the greatest overlap ascendent near 
the origin, the retriever with m, = 0.77 has the best retrieval overlap. 

The optimal performances in the case of discrete noise can be obtained similarly, 
except that the performance function in (6) has to be replaced by 

The behaviour of the optimal attractor overlap and the corresponding phase diagram 
are qualitatively the same as for the case of Gaussian noise. 

Our work has demonstrated the principle of specialization for different environ- 
ments in neural networks. At zero temperature the MSN gives the best retrieval overlap 
and storage capacity, but at high temperatures the M S N  is no longer the best. In the 
high-temperature regime ( T  a 0.38) the Hopfield network yields the maximum storage 
capacity, but at lower temperatures its storage capacity is no longer optimal and at 
zero temperature it is much worse than the MSN.  In the low-temperature regime 
( O <  T s O . 3 8 )  neither the MSN nor the Hopfield network has the maximum storage 
capacity. Instead, the network with the maximum storage capacity at a temperature 
in this regime corresponds to a training overlap close to (but not exactly) 1-, which in 
turn stores less patterns than other networks at other temperatures. Therefore one 
cannot attain the best storage at all temperature ranges for a single network. In other 
words, networks are specialized. Interestingly, this is roughly the picture anticipated 
in [3], where it is found that the storage capacity of the MSN is superseded by 'learning 
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with error' at moderate temperature, and by the Hopfield network at high temperature. 
The aligning field distribution ~ ( ~ 2 )  for 'learning with error' [3] has a two-band 
structure: a positive MsN-like band and a small negative tail; this in fact is very similar 
to the p ( A )  for training overlaps close to 1 at low temperature [6]. 

The notion of specialization also applies to different performance requirements in 
neural networks. In [6] we have already seen that the best retrieval overlap and 
associativity are given at T=O by the MSN and the Hopfield network, respectively. 
(See also [8] for similar arguments in the space of neuronal Boolean functions.) For 
T # 0, we see that the best retrieval overlap and associativity are generally given by a 
higher and lower training overlap, which correspond respectively to stable and unstable 
fixed points of the retrieval envelope. One cannot attain both the best retrieval overlap 
and associativity for a single network, except at the phase boundaries. Again, networks 
can be described as specialized. The implication to network design is that separate or 
modular networks have to be considered in order to achieve both objectives. 

The procedure of optimization in equations (7)-( lo), and the duality of the optimal 
training and retrieval overlaps are, in fact, very general. The averaged output overlap, 
which is used here as the performance function, can be replaced by other performance 
functions, and the training overlap by other environmental parameters. The important 
point is the principle of adaptation: if we intend to optimize a performance function 
g for an environment m during retrieval, the network should be adapted to the same 
performance function g for the same environment m during training. 

Our studies have opened the gateway to examination of the behaviour of networks 
which optimize an arbitrary performance function for an arbitrary environment, but 
general algorithms or explicit formulae for the optimal network remain unknown 
(except, perhaps, a few special cases, e.g., the perceptron learning algorithm [13, 141 
or the Hebbian learning rule). This work is now in progress. As a point of further 
interest, we remark that the concept of self-adaptation, which provides a theoretical 
interpretation for the retrieval envelope, may also serve as a basis for practical learning 
procedures which optimize the network performance in the presence of noise (or in 
another retrieval environment). I t  may be possible that the learning procedure involves 
relaxing the network to an attractor, and then updating the synaptic interactions to 
optimize the performance at the retrieval attractor. This idea has been accommodated 
in some recent work on symmetric networks [15], and surely deserves further 
exploration. 
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Appendix 1. 

In this appendix we shall derive the optimization procedure outlined from (7)-( 10). 
Following [6] the partition function corresponding to the performance Z p  g(AcI) can 
be written as 

(Al.1) 
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where Pan = Ti; .  Using the replica method [ 121, we shall calculate the pattern-averaged 
free energy by the replica formula 

1 
"-0 n ((In Z)) = lim - (((2")) - 1 )  (A1.2) 

where ((. . .)) represents averaging over the patterns. Using the techniques of Gardner 
and Derrida [5], we can show that ((Z")) is given by 

(A1.3) 

where the extremum is taken over the space of {E,}, { F o p }  and {qUp} .  Gj is a term 
involving integration over the interaction space, and is identical to the corresponding 
term in [5], which is given by 

E FapJ ,Jp )  (A1.4) 
n < P  

and G, is a term involving averaging over the patterns, given by 

In the replica symmetric ansatz, E ,  = E, FaP = F and qaP = q. In the n + 0 limit, 
elimination of E and F at the saddlepoint, as done in [5], yields 

(Al .6 )  

In the low-temperature limit, Pan + CD and Pa,,( 1 - q )  = y, the integration over A can be 
simplified by the method of steepest descent, so that 

where A is related to t via (8) at the saddle point. The averaged maximum performance 
per pattern is then given by 

1 1 f =  lim - 
P a n + =  PanaC 

The extremum condition for y becomes '(I 2Y2 a 

By virtue of (S), the second term vanishes, and this condition reduces to (9) ,  and f 
reduces tof=IdAp,(A)g(A),  where p , ( A )  is identical to p(A) in (7). When the function 
A ( t )  is multi-valued, (A1.7) implies that we should choose the value of A giving the 
largest exponential argument, which reduces to the Maxwell's construction (10). 

It now remains to show that the aligning field distribution 
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is identical to (7). In the n+O limit this can be written as 

xexp  X(Pang(A,)+iA,x, -$d)- 1 qa&xp)6(2-la) .  (Al.11) 

In the replica symmetric ansatz and the low-temperature limit, ( A l . l l )  reduces to (7 ) .  
( a  , < P  

Appendix 2. 

In this appendix we shall derive equation (12). Using ( 7 )  and ( l l ) ,  we obtain 

(A2.1) 

In the term d h l d m ,  above, the differentiation should be carried out at constant t, since 
it is an integration variable. Thus from (8), A depends on m, only via y and the function 
g(A). Differentiating (8) with respect to m,, we obtain 

To evaluate dyldm, ,  we invoke the condition (9),  yielding 

(A2.2) 

(A2.3) 

=.[I Dtg’A’@-(S am Dtg.’A’)(l DtA’(A-t)- am 

(A2.5) 

Eliminating A - t using (8) ,  we arrive at equation (12). In cases where Maxwell’s 
construction is necessary, surface terms will appear in (A2.1) and (A2.3), but it is easy 
to prove that they cancel in the final result. Note that the derivation is not dependent 
on the particular form of the performance function, nor on its functional dependence 
on the training overlap. 

Appendix 3. 

In  this appendix we shall derive the critical exponent at point E. Since both lines AE 
and CE involve the coalescence of stable and unstable fixed points, both are described 
by the equations 

f m ( m )  = m (A3.1) 
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and 

d f,(m)/dm = 1. (A3.2) 

The difference between the lines is that d2f,(m)/dm2>0 for AE whereas 
d2 f , (m) /dm2s0  for CE. The critical point E is therefore given by the conditions 
(A3.1) and (A3.2), together with 

d2fm(m)/dm2 = 0. (A3.3) 

Near E, series expansion of these equations yields 

afo a f o  
aT aa 
-AT+- A a  + f3(Am)3 = 0 

a f  L a f l  

aT aa 
-AT+- ha + if3(Am)2 = O  

where fr =d ' f , (m)/dm' ,  so that along the lines AE and CE we have 

and the equation of the lines becomes 

Hence the two lines intersect with a common tangent of slope 

- @fo/ a a I /  @fo/ a T)  

and a cusp of critical exponent 3. 
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